Model systems to study the Bloom Syndrome Helicase in Homologous Recombination

Awardee: Roger Greenberg

Institution: University of Pennsylvania

Awarded: $100,000

Funding Period: September 1, 2022 - August 31, 2024


Project Summary:

Bloom Syndrome arises due to inherited mutations in the gene that encodes the BLM helicase. Patient cells experience myriad alterations to their DNA due to deficiency in specific aspects of a DNA repair process known as homologous recombination. We have developed systems that allow us to identify the function of the BLM helicase in DNA repair at a defined region of the human genome. We have used these approaches to publish high impact papers during this funding period that describe the role of BLM in DNA repair. In year two of this project, we expect to gain a better understanding of how BLM helicase acts to direct DNA repair and strategies to bypass the need for BLM when mutations in the BLM gene arise.


Publications:

Zhang T, Rawal Y, Jiang H, Kwon Y, Sung P, and Greenberg RA. Break Induced Replication Orchestrates resection dependent template switch. Nature 619(7968):201-208, 2023.

Previous
Previous

PET Radiotracer development based on existing ATM-inhibitors

Next
Next

Identification and characterization of factors that suppress Bloom syndrome genomic instability