Investigating mechanisms underlying cognitive dysfunction in Glut1 deficiency syndrome
Awardee: Maoxue Tang
Institution: Columbia University
Grant Amount: $61,855.00
Funding Period: February 1, 2023 - January 31, 2024
Summary:
Glucose Transporter-1 deficiency syndrome (Glut1 DS) is a pediatric-onset brain disorder caused by mutations in one copy (haploinsufficiency) of the SLC2A1 (Glut1) gene and therefore low levels of the SCL2A1-coded protein, Glucose Transporter-1. Patients afflicted with Glut1 DS suffer severe epileptic seizures as children and also exhibit delayed cognitive development. Later in life, a debilitating movement disorder develops and predominates. As of yet, there is no truly effective treatment for Glut1 DS. Moreover, it is unclear how low Glut1 protein causes brain dysfunction. In this project, we wish to understand how low Glut1 results in impaired cognition. We suspect that lactate, a downstream product of brain glucose, is a key mediator of Glut1 DS disease. Low brain glucose in Glut1 DS is thought to reduce levels of brain lactate. Since brain lactate is the preferred energy substrate of cerebral neurons, these neurons are starved. Consequently, they are unable to efficiently connect and communicate with one another. These ideas will be investigated in well-established model mice we have created in the laboratory. At the end of the project, we expect to have a better understanding of how low Glut1 affects cognition and how impairments in cognition correlate with altered brain structure. The project is also expected to identify molecules that rely on adequate brain glucose (and lactate) to ensure that the cerebral circuitry is properly established. Consequently, at the conclusion of this project, we expect to be in a better position to identify therapeutic points of intervention in our quest to treat Glut1 DS effectively and safely.